NAME:

Solutions To Math 155 Practice Exam 1

Instructions: WRITE YOUR NAME CLEARLY. Do as many problems as you can for a maximal score of 100. SHOW YOUR WORK!

1. Find $(f^{-1})'(2)$ given that $f(x) = x^3 + 3 \sin x + 2 \cos x$. [10 pts]

Solution: $f(0) = 2$, therefore $(f^{-1})(2) = 0$. Observe that the derivative $(f^{-1})'(2)$ represents the slope of the tangent line to the curve $y = f(x)$ at the point $(0, 2)$ when y is the horizontal axis and x is the vertical axis. Thus, $(f^{-1})'$ $\mathbf{1}$ $\frac{1}{f'(0)} = \frac{1}{3}$ $\frac{1}{3}$.

2. Differentiate $y = \frac{(x^3 + 2x^2)^4 s}{x^{1/3}}$ $\frac{x}{x^{1/3}}$ [Hint: Be smart about it!] [10 pts] **Solution:** $\mathbf{1}$ $rac{1}{3}$ ln x. Thus, $rac{1}{y}$ d $\frac{dy}{dx} = \frac{8}{x}$ $\frac{6}{x}$ + 4 $\frac{4}{x+2}$ + 2^s $\frac{\csc x \tan x}{\sec x} - \frac{1}{3x}$ $\frac{1}{3x} = \frac{8}{x}$ $\frac{8}{x} + \frac{4}{x+}$ $\frac{4}{x+2}$ + 2tan $x - \frac{1}{3x}$ $\frac{1}{3x}$. In particular, \boldsymbol{d} $\frac{dy}{dx} = \frac{(x^3 + 2x^2)^4 s}{x^{1/3}}$ $\frac{x^2}{x^{1/3}}\sec^2 x \left(\frac{8}{x}\right)$ $\frac{8}{x} + \frac{4}{x+}$ $\frac{4}{x+2}$ + 2 tan $x - \frac{1}{3}$ $\frac{1}{3x}$.

3. Differentiate
$$
y = (\tan x)^{\sin x}
$$
 [10 pts]

Solution: $\ln y = \sin x \ln(\tan x).$ \mathcal{Y} \boldsymbol{d} $\frac{dy}{dx}$ = cos x ln(tan x) + sin x $\frac{s}{t}$ $\frac{\sec x}{\tan x}$. In particular, $\frac{dy}{dx} = (\tan x)^{\sin x} (\cos x \ln(\tan x) + \sin x \frac{\sin x}{\tan x})$ $\frac{\sec x}{\tan x}$.

4. Evaluate the integral $\int \frac{2^x}{x^x}$ 2^x [10 pts]

Solution: $2^{\mathcal{X}}$ $\frac{2^x}{2^x+1}dx = \frac{1}{\ln x}$ $\frac{1}{\ln 2} \int \frac{2^x}{2^y}$ $\frac{2^{x} \ln 2}{2^{x}+1} dx = \frac{1}{\ln 2}$ $\frac{1}{\ln 2} \ln (2^x)$ 5. The half-life of cesium-137 is 30 years. Suppose we have a 100-mg sample. (a) Find the mass that remains after t years. [6 pts]

Solution:
$$
M(t) = 100 \left(\frac{1}{2}\right)^{t/30} = 100 e^{\ln \left[\left(\frac{1}{2}\right)^{t/30}\right]} = 100 e^{\frac{-\ln 2}{30}t}.
$$

(b) How much of the sample remains after 100 years? [2 pts]

Solution: $\overline{}$ $\frac{\text{m2}}{\text{30}}$ 100 \approx 9.92 mg.

(c) After how long will only 1 mg remain? [2 pts]

Solution: $\overline{}$ $\frac{\ln 2}{30}$. Solving for T, we obtain $\ln \left(\frac{1}{40} \right)$ $\mathbf{1}$ $\overline{}$ $\frac{\pi}{30}$ T or $T = 30 \frac{\text{m} \cdot 100}{\text{ln} \cdot 2} \approx 199.3 \text{ years}.$

6. Evaluate
$$
\int_0^{\sqrt{3}/4} \frac{dx}{1+16x^2}
$$
 [10 pts]

Solution:
$$
\int_0^{\sqrt{3}/4} \frac{dx}{1+16x^2} = \frac{1}{4} \int_0^{\sqrt{3}/4} \frac{4dx}{1+(4x)^2} = \frac{1}{4} \tan^{-1}(4x) \Big|_0^{\sqrt{3}/4} = \frac{1}{4} \tan^{-1}(\sqrt{3}) = \frac{\pi}{12}
$$

7. Compute
$$
\lim_{x\to\infty} (e^x + x)^{1/x}
$$
 [10 pts]

Solution:

 $\lim_{x\to\infty}(e^x+x)^{1/x}=\lim_{x\to\infty}e^{\left(1+\frac{x}{x}\right)}$ $\left(\frac{x}{e^x}\right)^{1/x} = \lim_{x\to\infty} e\left[\left(1 + \frac{x}{e^x}\right)\right]$ $\left(\frac{x}{e^x}\right)^{e^x}$ $\overline{}$ $1/e^{x}$ $=$ Alternatively, use l'Hospital's Rule:

$$
\lim_{x \to \infty} (e^x + x)^{1/x} = \lim_{x \to \infty} e^{\frac{\ln[e^x + x]}{x}} = \lim_{x \to \infty} e^{\frac{e^x + 1}{e^x + x}} = \lim_{x \to \infty} e^{\frac{e^x}{e^x + 1}} = \lim_{x \to \infty} e^{1 - \frac{1}{e^x + 1}} = e
$$

8. Evaluate the integral
$$
\int_0^1 \frac{r^3}{\sqrt{4+r^2}} dr
$$
. [10 pts]

Solution: Integrating by parts, we obtain that $\int_{0}^{1} \frac{r^3}{\sqrt{r}}$ $\sqrt{4+r^2}$ $\mathbf 1$ $\int_0^1 \frac{r^3}{\sqrt{4+r^2}} dr = \int_0^1 \frac{r}{\sqrt{4+r^2}}$ $\sqrt{4+r^2}$ $\mathbf{1}$ $\int_0^1 \frac{r}{\sqrt{4+r^2}} r^2$ $r^2\sqrt{4+r^2}$ $\bf{0}$ $\int_{0}^{1} - \int_{0}^{1}$ $\int_0^1 2r\sqrt{4+r^2}dr = \sqrt{5} - \frac{2}{3}$ $\frac{2}{3}(4+r^2)^{3/2}\Big|_0^1$ $1 = \sqrt{5} - \frac{1}{2}$ $\frac{10}{3}\sqrt{5} + \frac{1}{3}$ $\frac{16}{3} = \frac{1}{3}$ $\frac{16}{3}$ -7 $rac{7}{3}$ $\sqrt{}$

9. Evaluate the integral $\int_1^4 e^{\sqrt{}}$ $\mathbf 1$ [10 pts]

Solution: Let $u = \sqrt{x}$. Then $u^2 = x$ and $2u du = dx$. In particular, $\int_1^4 e^{\sqrt{x}} dx$ $\int_{1}^{4} e^{\sqrt{x}} dx =$ $\int_1^2 2u e^u$ $\int_1^2 2u \, e^u du$. Integrating by parts, we obtain $\int_1^2 2u \, e^u$ $\int_{1}^{2} 2u e^{u} du = 2u e^{u} \vert_{1}^{2} - \int_{1}^{2} 2e^{u}$ $\int_{1}^{2} 2e^{u} du =$ $4e^2 - 2e - 2e^2 + 2e = 2e^2$.

10. Find
$$
\int \tan^6 x \sec^4 x dx
$$
. [10 pts]

Solution: Since the derivative of $\tan x$ is $\sec^2 x$, we shall attempt to reduce the power of $\sec^4 x$ to $\sec^2 x$:

$$
\int \tan^6 x \sec^4 x \, dx = \int \tan^6 x \sec^2 x \, \sec^2 x \, dx = \int \tan^6 x (1 + \tan^2 x) \sec^2 x \, dx
$$

$$
= \int \tan^6 x \sec^2 x \, dx + \int \tan^8 x \sec^2 x \, dx = \frac{1}{9} \tan^9 x + \frac{1}{7} \tan^7 x + C
$$

Extra-Credit

11. Evaluate $\lim_{x\to 0} (\cos x - \sin 2x)^1$ [10 pts] **Solution:** $(\cos x - \sin 2x)^{1/x} = \lim e^{(\frac{1}{x})}$ $\frac{1}{x} \left(\frac{-\sin 2x}{\sin 2x} \right) = e^{-\frac{1}{2}x}$ c e^{-2} . This may be observed directly without using l'Hospital... Open your mind!

12. Find the infinite polynomial expansion for $f(x) = \tan^{-1} x$. [10 pts] **Solution:** Observe that $f'(x) = \frac{1}{x+1}$ $1 + x^2$ $\mathbf{1}$ $\frac{1}{1-(-x^2)} = \sum_{n=0}^{\infty} (-x^2)$ (why?). Thus $f(x) = \int \sum_{n=0}^{\infty} (-x^2)^n dx = \sum_{n=0}^{\infty} (-1)^n \int x^{2n} dx = \sum_{n=0}^{\infty} (-1)^n \frac{x^2}{2n}$ $\overline{\mathbf{c}}$ $\sum_{n=0}^{\infty}(-1)^n\frac{x^{2n+1}}{2n+1}$.

13. Suppose that some function f has the following properties. $f(x + y) =$ $f(x) + f(y) + 5x^2y + 5y^2x$ and $\lim_{x\to 0} \frac{f}{x}$ $\frac{f(x)}{x}$ = -3. Find $f'(x)$.

[10 pts]

Solution: $\frac{f(x+y)-f(x)}{y} = \frac{f(y)+5x^2y+5y^2}{y}$ $\frac{f^2y+5y^2x}{y} = \frac{f}{x}$ $\frac{(y)}{y}$ + 5x² + 5yx. Thus f'($\lim_{\nu\to 0} \frac{f}{\nu}$ $\frac{y)-f(x)}{y} = \lim_{y\to 0} \left(\frac{f}{y} \right)$ $\frac{(y)}{y}$ + 5x² + 5yx) = -3 + 5x².